Einleitung
Schlauchlining ist in der Kanalsanierung bereits seit langem bekannt und Stand der Technik. Die Aushärtung der Schlüche, die dann Rohr-in-Rohr-Systeme ohne Verbund mit dem Altrohr bilden, erfolgt dabei inzwischen überwiegend durch UV-Strahlung. Diese Aus härtemethode besitzt gegenüber anderen thermischen Verfahren zur Verkürzung der Aushärtzeit u.a. folgende Vorteile:
- Schnelle Aushärtung
- Weitgehende Unabhängigkeit von der Streckenlänge und Rohrdurchmesser durch Variation der Strahlungsquellenanzahl und -intensität
- Keine relevante Wärmeeinbringung in den Rohrkörper
- Keine Aufheiz- und Abkühlzeiten
- Keine Bereitstellung, Aufheizung und Entsorgung großer Wassermassen (Warmwasseraushärtung)
- Keine Kondensatbildung in Unterbögen oder Leitungstiefpunkten (Dampfaushärtung)
- Definierte und kontrollierte Prozessüberwachung
- In Abhängigkeit des verwendeten Harzes praktisch unbegrenzte Verarbeitungszeit

Allerdings konnten diese Vorteile bislang nicht für die Aushärtung von mit der Rohwand verklebteten Gewebeschläuchen für die Rehabilitation von Druckrohreitungen genutzt werden. Gewebeschläuche mit Verklebung besitzen allerdings u.a. den Vorteil, den Rohrinnerdurchmesser nicht nennenswert zu vergrößern und führen daher zu keiner Reduktion der Transportkapazität bzw. zu keinem höheren Energiebedarf für die benötigte Pumpleistung. Gewebeschlauchlining kann in Leitungsabschnitten mit Richtungsänderungen eingesetzt werden. Es überbrückt sicher Korrosionsdurchbrüche in der Altrohrleitung und bleibt selbst bei einem Rundbruch dauerhaft dicht. Weiterhin können vorhandene Anschlüsse der rehabilitierten Leitung mittels Fräsroboter grabenlos geöffnet und zukünftige Arbeiten an der Leitung (z.B. Wartung,
Herstellung neuer Anschlüsse, etc.) ohne Sonderbauteile vorgenommen werden.


Erster Einsatz in Europa

In Berlin-Lichtenberg war eine Abwasser- druckrohrleitung DN 500 GG der Berliner Wasserbetriebe auf einer Gesamtlänge von ca. 370 m zu rehabilitieren. Aufgrund der innerstädtischen Situation wurde eine grabenlose Alternative gewählt. Unter Beibehaltung des Förderschachts der Altleitung wurde die starline®EXPRESS für Druckrohrleitungen gewählt. Diese Technologie eröffnet neue Perspektiven. Druckrohrleitungen für alle Medien können in großen Einzelängen bis 300 m und Betriebsdrücken bis zu 30 bar an nur einem Arbeitsgang betriebsfertig saniert und wieder in Betrieb genommen werden. Zeit- und aufwändige und teure Ersatzmaßnahmen...

Für die Aushärtung des Gewebeuschlages wird eine völlig neu entwickelte Aushärtings- technologie genutzt.

Zu den grundlegenden Arbeitsschritten dieser Verfahrenskombination zählen:
- Wasserhochdruckreinigung mit bis zu 1500 bar
- Sandstrahlreinigung
- TV-Inspektion und Rohrkalibrierung
- Gewebeuschlaginstallation im starline®-HPLS-Verfahren
- Aushärtung im starline®-EXPRESS-Verfahren

Vorarbeiten

Die zu rehabilitierende Leitung wird aufgrund des Leitungsverlaufs und der örtlichen Gegebenheiten in zwei Abschnitten bearbeitet.

Der erste Abschnitt hat eine Länge von ca. 100 m und insgesamt sechs Bögen sowie einen Leitungsdüker. Der zweite Abschnitt mit einer Länge von ca. 270 m liegt im Bereich der derzeit maximal möglichen Aushärtelänge von 300 m.

Im Vorfeld werden die Baugruben zur Reinigung und den Gewebeuschlauchbau an der Abwasserdruckleitung angelegt und die Leitung getrennt und entleert.

Es erfolgt eine erste TV-Inspektion einschließlich Videoumschichtung der gesamten Leitung, um einen ersten Überblick über die Zustand der Leitung zu erhalten und um eventuell vorhandene Reinigungs- bzw. Sanierungshindernisse zu lokalisieren.

Während der anschließenden Reinigung mittels Wasserhochdruck werden sämtliche Ablagerungen, wie Fette, Fäkalien, Inkrustationen usw. mit Drücken bis zu 1500 bar entfernt (Bild 1).

Dabei wird das anfallende Spüllkraft nach einer Beprobung in die örtliche Schmutzwasserkanalisation eingeleitet. Die anfallenden Feststoffe werden fachgerecht abgefahren und entsorgt.

Die nun erforderliche Sandstrahlreinigung garantiert eine metallisch reine Rohrinneneoberfläche und somit optimale Basis für die spätere Verklebung mit dem einzubauenden Gewebeuschlacht (Bild 2).

Durch TV-Inspektionen werden die Erfolge der einzelnen Reinigungsschritte beurteilt und dokumentiert.

Vor dem Einbau des Gewebeuschlaches wird die gesamte Leitung durch ein von Karl Weiss entwickeltes, optisches selbstfahrendes Rohrkalibersystem von innen vermessung, um den genauen Rohrinnendurchmesser an allen Punkten der Leitung zu ermitteln. Dadurch wird gewährleistet, dass der passende, also richtig dimensionierte, Gewebeuschlacht verwendet wird.

Rehabilitationsvorgang

Die nun folgende Gewebeuschlachtrehabilitation im starline®-HPLS-Verfahren untergliedert sich in mehrere Arbeitsschritte.


Bei der nun folgenden beschleunigten Aushärting kommt das starline®-EXPRESS-Verfahren zur Anwendung. Dazu werden am Zielpunkt der Rohrleitungssperre spezielle Schlauchschleusen montiert. Der unter Innenrohrdruck stehende Gewebeuschlacht wird damit kurzzeitig verschlossen und das Gewebeuschlauchende in der Zieldrahtbrücke so fixiert, dass das Druckmantelmantel über den Druckmantelmantel und die Rohrführung (Bild 3).

Bei der nun folgenden beschleunigten Aushärting kommt das starline®-EXPRESS-Verfahren zur Anwendung. Dazu werden am Zielpunkt der Rohrleitungssperre spezielle Schlauchschleusen montiert. Der unter Innenrohrdruck stehende Gewebeuschlauch wird mit einem definierten Revisionsdruck und der Druckhöhe so fixiert, dass das Druckmantelmantel über den Druckmantelmantel und die Rohrführung (Bild 3).

Durch die gleichzeitige Kamerabebachtung wird die Qualität des eingebauten verfestigten Gewebeuschlaches noch vor der Aushärtung im Rohr begutachtet. Die Aushärtung wird die Strukturaufnahme in Betrieb genommen und mit einer definierten Geschwindigkeit durch den Leitungsschlauches eingeleitet (Bild 4).

Darin kann bei gleichzeitiger Kameraljebachtung die Qualität des eingebauten verfestigten Gewebeuschlaches noch vor der Aushärtung im Rohr begutachtet werden. Die Aushärtung wird die Strukturaufnahme in Betrieb genommen und mit einer definierten Geschwindigkeit durch den Leitungsschlauches eingeleitet (Bild 4).

Durch die gleichzeitige Kamerabebachtung wird die Qualität des eingebauten verfestigten Gewebeuschlaches noch vor der Aushärtung im Rohr begutachtet. Die Aushärtung wird die Strukturaufnahme in Betrieb genommen und mit einer definierten Geschwindigkeit durch den Leitungsschlauches eingeleitet (Bild 4).

Nach der Erfassung der Druckprüfung werden durch den Gewebeuschlacht verschlossene Abzweige mit einem Fräseroboter gräbenlos geöffnet und die TV-Abnahmeinspektion durchgeführt.

Zusammenfassung

zeichnen. Speziell bei kleineren Rohrleitungen und durch weitere Optimierungsmöglichkeiten sind bei zukünftigen Projekten nennewitenabhängige Aushärtegeschwindigkeiten von bis zu 200 m/h realistisch.


Bodenaustausch im innerstädtischen Bereich ist eine deutliche Kohlendioxidemissionsreduktion zu verzeichnen.

Autoren:

Dipl.-Ing. Andreas Hüttemann
Karl Weiss Technologieunternehmen GmbH & Co. KG, Berlin
Leiter FuE und Qualitätsmanagement
Tel. +49(0)30/80970022
E-Mail huettemann@karl-weiss.com

Dipl.-Ing. Holger Turloff
Karl Weiss Technologieunternehmen GmbH & Co. KG, Berlin
Leiter Grabenlose Rehabilitation
E-Mail: turloff@karl-weiss.com

Rohrleiterungserneuerung mit Berstverfahren

M. Rameil (Hrsg.)
2006, 304 Seiten, broschiert, € 56,00
ISBN 3-8027-2740-1
ISBN 978-3-8027-2740-5
Erscheinungstermin: 02.10.2006


Inhalt: Anwendungsbereiche und Methodik; Durchführung des Berstverfahrens; Berstbare Anströmmaterialien; Geeignete Neuprodukte; Vergleich Bersten- und offene Bauweise; Gerätestechnik für das Berstverfahren; Verfahrensvarianten; Anwendungsbereiche für Druckrohrleitungen; Abwasserkanäle und -anstichanschlussleitungen; Sondererfallsätze; Musterausschreibungsstücke; Qualitätssicherung durch zertifizierte Fachunternehmen; Technische Regeln; Literatur; Musterformulare.

www.vulkan-verlag.de